bet 369
mitzvahceremonies.com:2024/12/12 0:36:38
bet 369
Os cartazes de campanha que adornam as ruas do Irã para a próxima eleição presidencial fazem grandes promessas: prosperidade econômica, 🔔 fim da corrupção ; uma imprensa livre e o compromisso com um candidato bet 369 "salvar os cidadãos" dos problemas no 🔔 País.
Em seus esforços para atrair votos, todos os seis candidatos - cinco conservadores e um reformista estão desencadeando ataques 🔔 ao status quo. Nos discursos de debates televisionados ou bet 369 mesas redondas do governo criticaram as políticas econômicas nacionais (e 🔔 externas), bem como o tratamento violento das mulheres pela polícia moral da cidade; ridicularizaram avaliações oficiais rouca sobre a perspectiva 🔔 econômica iraniana por ser uma ilusão prejudicial à saúde pública dos cidadãos iranianos
O Irã está realizando uma eleição presidencial especial 🔔 bet 369 28 de junho para escolher um sucessor do presidente Ebrahim Raisi, conservador linha-dura que foi morto no mês passado 🔔 num acidente com helicóptero. Enquanto o líder supremo Ali Khamenei tem a palavra final sobre todas as principais decisões 🔔 políticas iranianas e os EUA definembet 369agenda interna; mas isso pode influenciar ainda mais na política externa da nação 🔔 árabe:
As eleições no Irã não são livres e justas para os padrões ocidentais, a seleção de candidatos é rigorosamente examinada 🔔 pelo Conselho Guardião. Algumas eleição foram competitivas; porém o resultado pode ser imprevisível: O conselho aprovou as candidataes atuais da 🔔 lista dos 80 – sete delas mulheres - entre elas uma ex-presidente do país (e vários ministros governamentais) que estavam 🔔 desqualificados como membros das Câmara Municipal bet 369 todo esse período
Em campanhas políticas passadas, conservadores e reformistas atacaram seus rivais ; 🔔 no entanto os conservadoramente permaneceram dentro de limites ideológico-restritos que impediam ataques ao sistema.
Embora as duras críticas desta campanha possam 🔔 ser esperadas do candidato à reforma, tê-las vindo dos conservadores surpreendeu alguns iranianos. E esse pode ter sido o ponto 🔔 de vista? dizem os analistas...
A participação eleitoral é um marcador importante para o governo, uma medida de seu apoio e 🔔 legitimidade. Tem estado atrasada bet 369 meio a boicotes ou à falta do voto dos eleitores; até certo ponto os debates 🔔 refletem as divisões reais dentro das fileiras políticas da nação com problemas no país – mesmo entre funcionários públicos - 🔔 que são bastante frustrantemente frustradores perante eles mesmos:
A presença de um candidato à reforma, o Dr. Masoud Pezeshkian é 🔔 bet 369 si uma surpresa porque a maioria dos reformistas não pode concorrer nas recentes corridas parlamentares e presidenciais; no entanto 🔔 isso também poderá ser manobra do governo para aumentarbet 369participação na eleição presidencial americana (ver artigo abaixo).
O Dr. Pezeshkian, 🔔 cirurgião cardíaco e ex-ministro da Saúde do Parlamento foi um "candidato a falar tentando criar debate para mobilizar o voto 🔔 das pessoas", disse Sanam Vakil diretor de programa no Oriente Médio ou Norte África na Chatham House bet 369 Londres: 🔔 “Eles provavelmente calculariam que se fosse feita uma eleição mais dinâmica seria benéfico”.
Ainda assim, Vakil disse que a temporada de 🔔 eleições no Irã apresentou um nível rigoroso debate público raramente visto bet 369 alguns países da região com governos autoritários.
Apesar dos 🔔 esforços do governo, despertar o interesse suficiente para persuadir os eleitores a aparecer nas urnas bet 369 grande número continua sendo 🔔 um desafio. O cinismo eleitoral é generalizado muitos iranianos dizem que eles perderam fé na conquista de mudanças significativas 🔔 através das eleições e preferem acabar com as regras clericals
"Resentimos seus engano, coloridos todos os dias", disse um estudante universitário 🔔 do sexo masculino que não deu seu nome ao Dr. Pezeshkian bet 369 uma reunião recente na Universidade de Teerã ndia 🔔 segundo o
da festa - a multidão no auditório se transformou num aplauso e alegria!
O estudante então desafiou a 🔔 importância da presidência. "Que significado tem o presidente", perguntou ele, quando não possui poder para influenciar aqueles acima nem permanecer 🔔 imune à interferência do aparato de inteligência?"
Pezeshkian, embora geralmente simpático disse ao aluno que como presidente ele não teria o 🔔 poder de realizar muitas das coisas solicitadas por Ele – assim com libertar prisioneiros políticos - “mesmo se eu quiser”.
Ele 🔔 passou a dizer aos alunos que se opunha à polícia de moralidade e disse ter falado contra os tratamentos da 🔔 jovem curda Mahsa Amini, morta sob custódia bet 369 2024.
"Fazemos coisas que fazem mulheres e meninas nos odiarem", disse ele. “É 🔔 o nosso comportamento, é isso quem as torna confrontativas."
As eleições iranianas podem ser fluidas, com candidatos saindo para solidificar o 🔔 apoio entre um ou dois concorrentes. Por enquanto a primeira-premiê é uma conservadora Mohammad Baqer Ghalibaf ex comandante do 🔔 Corpo de Guarda Revolucionária Islâmica e antigo prefeito da Teerã que agora está no Parlamento Europeu
Ghalibaf é uma figura forte 🔔 com laços estreitos ao Sr. Khamenei, denunciantes e jornalistas relataram vários escândalo de envolvimento do sr Gandhi bet 369bet 369família 🔔 incluindo corrupção financeira ou heresia ideológica como pregar austeridade enquanto seus parentes gastam muito no exterior; ele negou as alegações
Navid 🔔 Farrokhi, 45 anos de idade e empresário do Teerão que faz parte da Câmara Consultiva Iraniana no Comércio (Câmara Comercial), 🔔 disse apoiar Ghalibaf por causa das suas décadas bet 369 experiência administrativa com capitais estrangeiros na qualidade como presidente. Ele afirmou 🔔 não se importar nem sequer pelas acusações sobre corrupção
"Estou vivendo aqui, trabalhando e gerenciando meus funcionários com muitos desafios", disse 🔔 Farrokhi bet 369 uma entrevista por telefone. “Eu quero sentir que tenho voz para melhorar nossas vidas? posso fazê-lo através da 🔔 participação nas eleições”.
Ali, 42 anos de um engenheiro iraniano que pediu para não usar seu sobrenome por medo da retaliação 🔔 e disse bet 369 uma entrevista estar se aquecendo com o Dr. Pezeshkian pensando votar nele
"Eu pensei que não votaria bet 369 🔔 ninguém nesta rodada da eleição, mas Pezeshkian é uma figura interessante", disse ele. Ele tem sido direto e diretos nas 🔔 suas opiniões sem ter manchas nabet 369carreira política."
Os outros quatro candidatos conservadores são Saeed Jalil, um ultra-duro linha que 🔔 atuou bet 369 cargos seniores ; Amirhossein Ghazizadeh Hashemi (vice presidente da administração do Sr. Raisi); Alireza Zakani [atual prefeito de 🔔 Teerã] e Mostafa Pourmohammadi – o único clérigo - diretor para a contraespionagem no Ministério dos Serviços Secretos
O Sr. Ghalibaf 🔔 procurou argumentar que poderia melhorar a eficiência do governo, queixando-se durante uma mesa redonda televisionada de discussão sobre o facto 🔔 da perda pelo menos 30% das receitas petrolíferas bet 369 escapar às sanções - um valor inaceitavelmente elevado – disse ele: 🔔 "resultado por não estar informado e ser incompetente".
O clérigo, o Sr. Pourmohammadi declarou bet 369 um debate televisionado que a República 🔔 Islâmica tinha quase perdido as pessoas e de modo bem sucedido "exigiria milagre".
"O milagre da confiança das pessoas. O milagres 🔔 de confiar no governo", acrescentou ele,
O ponto de Pourmohammadi ilustrando sucintamente o argumento do Sr. Pourmamadi foi um engenheiro 37 🔔 anos, que também pediu para seu sobrenome não ser usado por medo da retribuição "Não vou votar - as eleições 🔔 são livres", disse ele bet 369 uma entrevista telefônica."Meu representante é dos candidatos e eu nao vejo nenhuma diferença entre eles 🔔 nenhum representa meus desejos".
Enquanto os candidatos foram livres para criticar o governo, a mídia de notícias foi colocada bet 369 uma 🔔 coleira curta. Dois jornalistas proeminentes Yashar Soltani e Saba Azarpeik são presos este mês por causa do trabalho deles 🔔 expondo acusações contra funcionários governamentais que estão sendo alvo da corrupção - principalmente Ghalibaf
O órgão do governo emitiu um aviso 🔔 bet 369 junho para todas as organizações de mídia noticiosa que qualquer cobertura poderia ser interpretada como encorajando pessoas a não 🔔 votar ou reduzindo participação dos eleitores seria crime punível com até 74 chicotadas pelo executivo superior e revogação da licença.
Na 🔔 terça-feira, o Prêmio Nobel e ativista de direitos humanos que está cumprindo uma sentença na prisão por 10 anos foi 🔔 condenado a um ano adicional da cadeia.
A sentença adicional foi uma punição por ela pedir aos iranianos que boicotem as 🔔 eleições parlamentares bet 369 março e criticar Dina, filha de Ghalibaf s. para um chá luxuoso bebê na Turquia - apesar 🔔 da pregação do pai dela sobre a compra dos produtos domésticos pelos cidadãos americanos no Irã (ver artigo).
O escândalo ficou 🔔 conhecido no Irã como babyshowergate.
Na quinta-feira, o judiciário iraniano anunciou a prisão de Vahid Ashtari. um proeminente denunciante conservador que 🔔 havia exposto os escândalos do bebê chuveiro...
Leily Nikounazar contribuiu com reportagens.
Quem são os CEO, fundadores e diretores da Vbet? Vahe Badalyan, cofundador, é fundador
e 1 empresa. Vigen Badalian, co-fundador, fundador 🔑 da 1 companhia. Vbet - Perfil da
esa - Tracxn tracXn : empresas
0 5 apostas
Previous chapters:
The roulette bias winning method of García Pelayo
Betting system for
biased wheels
As we can observe, if we have a ♠ thousand spins taken from a truly random
table, without bias, we would hardly find the most spun number having something ♠ beyond
15 positives. Likewise, we have a soft limit for the best two numbers, the two which
have been spun ♠ the most, of +26. If we continue searching for different groups of best
numbers, we can center in the sum ♠ of the best nine, which have a soft limit of +67. Why
the soft limit only? Because the hard limit ♠ is too erratic and luck might make a number
to fire-up without actually having any bias. It is more trustworthy ♠ to work with the
soft limit, which occurs 95% of the time, making decisions based on it. These tables
are ♠ more reliable the larger the numerical group is. Application to a single number
being more doubtful than the sum of ♠ the best six, where it is harder for luck to
interfere in a decisive manner. I make the study only ♠ up to the best nine, because if
there are ten or more best numbers outside the limit, it tells the ♠ table is entirely
good, and this is already studied on the first part.
How do these tables complement the
previous analysis? ♠ It might be the case that a roulette as a whole doesn’t goes beyond
the soft limit, as we studied ♠ at the beginning, but the best four numbers do go beyond.
They can be bet without much risk, awaiting to ♠ collect more data which defines with a
higher accuracy the quality of the current roulette table. When a roulette is ♠ truly
good, we will likewise reinforce on its quality by proving it does go outside of the
limits set on ♠ these tables.
Always using simulation tests on the computer, this is, in
a experimental non-theoretical way, I studied other secondary limits ♠ which assist to
complete the analysis of any statistics taken from a roulette. For instance, “how many
consecutive numbers, as ♠ they are ordered on the wheel, can be throwing positives?”, or
“How many positives can two consecutive numbers have as ♠ a maximum?”. I do not show
these tables because they are not essential and only confirm BIAS which should have
♠ been detected by the tables previously shown. Any way, we will see some practical
examples below.
So far the system was ♠ based on evidence that -although simulated- was
being empirical; these were made with the help of the computer in order ♠ to verify the
behavior of a random roulette.
I found the limits up to where luck alone could take it,
then ♠ I was able to effectuate a comparison with real-life statistics from machines
which were clearly showing result outside the limits ♠ of pure chance, this is, they
pointed to trends that would remain throughout its life if their materials would not
♠ suffer alterations. These physical abnormalities could be due to pockets of unequal
size, however small this inequality, lateral curvatures leaving ♠ sunken areas with the
counterweight of other raised areas. Or even a different screwing of the walls from the
pockets ♠ collecting the ball so that a harder wall means more bounce. With the
consequent loss of results that are increased ♠ in the neighboring pockets which collect
these bounced balls with a higher frequency than normal.
On theoretical grounds I
studied areas ♠ of mathematics unknown to me, in the probability branch, and worked a lot
with the concept of variance and standard ♠ deviations. They helped me, but I could not
apply them correctly given the complexity of roulette, that is more like ♠ a coin with 18
sides and 19 crosses bearing different combinatorial situations, which invalidate the
study with binomials and similar.
The ♠ major theoretical discovery was forwarded to me
by a nephew, who was finishing his career in physics. He referred me ♠ some problems on
the randomness of a six-sided die. To do this they were using a tool called the « ♠ chi
square », whose formula unraveled -with varying degrees of accuracy- the perfection or
defects from each drawn series. How ♠ come nobody had applied that to roulette?
I handled
myself with absolute certainty in the study of the machines, to which ♠ the fleet had
already pulled out great performance up to that date, thanks to our experimental
analysis, but theoretical confirmation ♠ of these analyzes would give me a comforting
sense of harmony (In such situations I’m always humming «I giorni
dell’arcoballeno»*.
We ♠ carefully adapt this formula to this 37-face die and it goes as
follows:
The chi square of a random roulette should ♠ shed a number close to 35.33. Only
5% of the time (soft limit) a number of 50.96 can be reached ♠ -by pure luck- and only
0.01% of the time it will be able to slightly exceed the hard limit of ♠ 67.91.
We had to
compare these numbers with those from the long calculations to be made on the
statistics from the ♠ real wheel we were studying. How are these calculations made?
The
times the first number has showed minus all tested spins ♠ divided by 37, all squared,
and divided by the total of analyzed spins divided by 37.
Do not panic. Let’s suppose
♠ the first number we analyze is the 0, to follow in a clockwise direction with all other
roulette numbers. Let’s ♠ suppose on a thousand spins sample number 0 has come out 30
times:
(30-1000/37) squared and the result divided by (1000/37) ♠ = 0.327
The same should
be done with the following number, in this case in wheel order, proceeding with 32 and
♠ following with all roulette numbers. The total sum of results is the chi square of the
table. When compared with ♠ the three figures as set out above we will find if this
machine has a tendency, more or less marked, ♠ or it is a random table instead.
The
calculation, done by hand, frightens by its length but using a computer it ♠ takes less
than a flash.
Statistical analysis of numbers and wheel bias identification
strategy
While in my experimental tests I only watched ♠ leader numbers , this chi-square
test also has in mind those numbers that come out very little and also unbalance ♠ the
expected result.
There was a moment of magic when I found that the results of the
previous tables were perfectly ♠ in accordance with the results that the chi-square test
threw.
With all these weapons for proper analysis I did a program ♠ from which, finally,
we’ll see some illustrations:
TOTAL POSITIVE + 127 HIGHER + 24 L1 + 41 L2 + 70 L3 ♠ + 94
L4 + 113
LB + 174 A + 353 B + 243 C + 195 NA 4 AG 60 ♠ AD 46 N.° P 12 SPINS 10.000
CHI
37,18 50,96 67,91 35,33 DV-7,51 ROULETTE/DAY: RANDOM
*LB = Límite blando = Soft
limit.
In ♠ this chart I created throwing 10,000 spins to simulate a random table, we can
find all patterns of randomness; this ♠ will serve to compare with other real tables
we’ll see later.
In the bottom of the table, to the left at ♠ two columns, there are all
European roulette numbers placed on its actual disposition starting at 0 and continuing
in clockwise ♠ direction (0, 32 15, 19, 4, 21, 2, 25, etc.). We highlighted those which
have appeared more, not only based ♠ on their probability, which is one time out of 37,
but also based on the need to profit, i.e. more ♠ than once every 36.
If the average to
not lose with any number would be 1.000/36 = 27.77, our 0 has ♠ come out forty times;
therefore it is on 40, to which we subtract 27.77 = 12.22. Which are its positives, ♠ or
extra shows; therefore we would have gain. When 20 is – 4 4, 7 8 it is the number ♠ of
chips lost on the 10,000 spins thrown.
In the first row we find the total positive sum
of all the ♠ lucky numbers is +127 (the mean of a random table in our first table is
+126), away from the soft ♠ limit* (*Soft limit = Límite blando = LB), which is at the
beginning of the second row, and which for ♠ that amount of spins is +174. Next to it is
the reference of known biased tables, (All taken from the ♠ first table) which shows that
even the weakest (table C) with +195 is far from the poor performance which begins ♠ to
demonstrate that we are in front of a random table where drawn numbers have come out by
accident, so ♠ it will possibly be others tomorrow.
Returning to the first row we see
that our best number has +24 (it is ♠ 2) but that the limit for a single number ( L l )
is +41, so it is quite normal ♠ that 2 has obtained that amount, which is not
significant. If we want to take more into account we are ♠ indicated with L2, L3 and L4
the limits of the two, three and four best numbers, as we saw in ♠ the second tables (our
two best would be 2 and 4 for a total of +42 when their limit should ♠ be +70). Nothing
at all for this part.
In the middle of the second row NA 4 it means that it ♠ is
difficult to have over four continuous single numbers bearing positives (we only have
two). AG 60 tells us that ♠ the sum of positives from continuous numbers is not likely to
pass sixty (in our case 0 and 32 make ♠ up only +21). AD 46 is a particular case of the
sum of the top two adjacent numbers (likewise 0 ♠ and 32 do not reach half that limit).
After pointing out the amount of numbers with positives (there are 12) ♠ and the 10,000
spins studied we move to the next row which opens with the chi square of the table.
In
♠ this case 37,18 serves for comparison with the three fixed figures as follow: 50.96
(soft limit of chi), 67.91 (hard ♠ limit) and 35.33 which is a normal random table. It is
clear again that’s what we have.
Follows DV-751 which is ♠ the usual disadvantage with
these spins each number must accumulate (what the casino wins). Those circa this amount
(the case ♠ of 3) have come out as the probability of one in 37 dictates, but not the one
in 36 required ♠ to break even. We conclude with the name given to the table.
From this
roulette’s expected mediocrity now we move to ♠ analyze the best table that we will see
in these examples. As all of the following are real tables we ♠ played (in this case our
friends “the submarines” *) in the same casino and on the same dates. The best, ♠ table
Four:
(* Note: “Submarines” is the euphemism used by Pelayo to name the hidden players
from his team).
TOTAL POSITIVES + ♠ 363 HIGHER + 73 L1 + 46 L2 + 78 L3 + 105 L4 + 126
LB
+ 185 A + ♠ 447 B + 299 C + 231 NA 4 AG 66 AD 52 N.° P 13 SPINS 13.093
CHI 129,46 50,96
♠ 67,91 35,33 DV-9,83 ROULETTE/DAY: 4-11-7
What a difference! Here almost everything is
out of the limits: the positive (+363) away from ♠ the soft limit of 185. The table does
not reach A but goes well beyond the category of B. The ♠ formidable 129.46 chi, very far
from the fixed hard limit of 67.91 gives us absolute mathematical certainty of the very
♠ strong trends this machine experience. The magnificent 11 with +73 reaches a much
higher limit of a number (L1 46), ♠ 11 and 17 break the L2, if we add 3 they break the
L3, along with 35 they break the ♠ L4 with a whopping +221 to fulminate the L4 (126). It
doesn’t beat the mark for contiguous numbers with positives ♠ (NA 4), because we only
have two, but AG 66 is pulverized by the best group: 35 and 3,along with ♠ that formed by
17 and 37, as well as the one by 36 and 11. The contiguous numbers that are ♠ marked as
AD 52 are again beaten by no less than the exact three same groups, showing themselves
as very ♠ safe. Finally it must be noted that the large negative groups ranging from 30
to 16 and 31 to 7 ♠ appear to be the mounds that reject the ball, especially after seeing
them in the graph on the same arrangement ♠ as found in the wheel.
Playing all positive
numbers (perhaps without the 27) we get about 25 positive gain in one ♠ thousand played
spin (the table is between B and A, with 20 and 30 positives of expectation in each
case). ♠ It is practically impossible not winning playing these for a thousand spins,
which would take a week.
Another question is chip ♠ value, depending on the bank we have.
My advice: value each chip to a thousandth of the bank. If you ♠ have 30,000 euros, 30
euros for each unit. These based on the famous calculations of “Ruin theory” precisely
to avoid ♠ ruining during a rough patch.
Another interesting table for us, the
Seven:
TOTAL POSITIVES + 294 HIGHER + 83 L1 + 56 ♠ L2 + 94 L3 + 126 L4 + 151
LB + 198 A +
713 B + 452 C + 325 ♠ NA 4 AG 77 AD 62 N.° P 13 SPINS 21.602
CHI 77,48 50,96 67,91 35,33
DV-16,22 ROUILETTE/DAY: 7-9-3
This table seven, ♠ with many spins, is out of bounds in
positives and chi, but the quality is less than C. It has, ♠ however, a large area
ranging from 20 to 18 having almost +200 by itself, that breaks all NA, AG and ♠ AD,
which while being secondary measures have value here. No doubt there’s something,
especially when compared with the lousy zone ♠ it is faced with from 4 to 34 (I wouldn’t
save the 21). Here should be a “downhill area” which ♠ is detected in this almost
radiography. The slope seems to end at the magnificent 31. Also add the 26. Finally, ♠ a
typical roulette worth less than average but more than B and C which is out of bounds
with three ♠ well defined areas that give a great tranquility since even as it doesn’t
has excessive quality, with many balls it ♠ becomes very safe.
Table Eight:
TOTAL
POSITIVES + 466 HIGHER + 107 L1 + 59 L2 + 99 L3 + 134 L4 ♠ + 161
LB + 200 A + 839 B + 526
C + 372 NA 4 AG 83 AD 73 N.° ♠ P 14 SPINS 25.645
CHI 155,71 50,96 67,91 35,33 DV-19,26
ROULETTE/DAY: 8-12-7
It is the first time that we publish these authentic ♠ soul
radiographies of roulette. My furthest desire is not to encourage anyone who,
misunderstanding this annex, plays happily the hot ♠ numbers on a roulette as seen out
while dining. That’s not significant and I certainly do not look forward to ♠ increase
the profits of the casinos with players who believe they are practicing a foolproof
system. It takes many spins ♠ to be sure of the advantage of some numbers. Do no play
before.
Be vigilant when you find a gem to ♠ detect they do not touch or modify it in
part or its entirety. If this happens (which is illegal but ♠ no one prevents it), your
have to re-study it as if it were a new one.
Regardless of how much advantage ♠ you have
(and these roulette tables are around 6% advantage, ie, more than double the 2.7%
theoretical advantage of the ♠ casino) it does not hurt that luck helps. I wish so to
you.
artigos relacionados
2024/12/12 0:36:38